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SUMMARY 
The paper outlines the formulation of a novel algorithm which can be used for the solution of both 
compressible and incompressible Navier-Stokes or Euler equations. Full incompressibility can be dealt with 
if the algorithm is used in its semi-explicit form and its structure permits arbitrary interpolation functions to 
be used avoiding the Babuika-Brezzi restriction. In a fully explicit version it introduces a rational form of 
balancing dissipation avoiding the use of arbitrary parameters and forms for this. 
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1 INTRODUCTION 

The extensive development of the finite element procedures for the solution of compressible, high 
speed flow problems occurred only in the last decade. Without doubt this was due to the 
'rediscovery' of the Lax-Wendroff methods' in the context of finite elements as the Taylor- 
Galerkin process293 and the introduction of the characteristic Galerkin However 
while the former formulation could be used for a general form of conservation equations, typical 
of Navier-Stokes or Euler problems with multiple variables and characteristic speeds, only the 
latter, the characteristic Galerkin method, justifies the use of the Galerkin spatial discretization. 
Both formulations yield an identical approximation only when a single variable and one 
characteristic speed exists. In the next section of this paper we recall the essentials of the 
characteristic Galerkin process and its rationale. 

The original Taylor-Galerkin stabilization of the finite element discretization has been widely 
supplemented by the use of empirical artificial diffusion forms, mainly developed in the context 
of finite difference methods, and the results consequently improved. However, it appeared to 
the authors that a return to the single characteristic speed, for which the procedures were proved, 
could be achieved by a suitable operator splitting procedure. 

The key to such a split lies in a fractional step method devised originally by Chorin'** and 
subsequently developed by others9- l 9  for incompressible flows. When compressibility exists, the 
acoustic or compressible wave phenomena, governed now by self-adjoint equations, can be 
separated from transport and dissipation. The latter processes in turn are governed by systems of 
equations with the fluid velocity as a single characteristic ~ p e e d . ~ ' - ~ ~  
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The original Chorin method was initially devised for the purpose of implementing a time- 
stepping process for the momentum and continuity equations in which the essential variables 
were the flow velocity u and pressure p .  The process, applicable to incompressible flows and 
sometimes interpreted as a projection method, starts by obtaining an approximate velocity field 
using the momentum equation with the pressure gradients omitted. This first step is followed by 
solving for the unknown pressures on inserting the velocity approximation into the continuity 
equation. The final stage is the correction of the velocity vector using the computed pressure 
terms. This led to the process sometimes being known as the velocity correction method. 

The method essentially separates the pressure calculation into one involving a Laplacian form 
which is self-adjoint and only a single characteristic velocity is involved in the first stage, clearly 
achieving the desired effect. However when the transient form is used for steady-state solution 
further benefits can arise. One of these, observed by Schneider et d.” and by Kawahara and 
Ohmiya,” is that the Babiiska Brezzi stability restrictions, well known in the velocity-pressure 
finite element discretization, no longer apply, as the discrete steady-state equations do not have 
a zero diagonal term. Now a term proportional to the time increment is there inserted and this 
allows arbitrary and convenient interpolations to be used for u and p .  Here for instance any equal 
interpolation is possible avoiding the difficulties frequently encountered in the use of such 
interpolation coupled with the previously mentioned Taylor-Galerkin procedures. 

The result here is in essence similar to that obtained by Hughes et aLZ4, SampaioZ5 and the 
wider interpretation of it described in Reference 26. 

These combined merits of the use of the fractional step procedures have been realized by the 
authors earlier” but so far success has been limited to applications in a non-conservative form of 
equations of Navier-Stokes and Euler” or to shallow water  equation^.'^ In the present paper the 
approach is considerably modified allowing the full form of conservation equations to be dealt 
with. Indeed the new approach can be simply extended to deal with the transport of additional 
variables such as turbulence parameters or chemical reactions. 

.The essential step of the new procedure is the realization that in each computational step the 
transport of a single scalar quantity occurs and the treatment of this is described in the next 
section. 

The characteristic Galerkin method, as any other linear scheme, does not preclude the presence 
of overshoots and undershoots in the vicinity of sharp gradients of the solution. This is true even 
for the linear convectiondiffusion equation. In the numerical simulation of compressible flows, 
these small oscillations, in principle localized, may deteriorate the global stability of the numer- 
ical solution due to the non-linear character of the problem. We describe in Section 5 the shock 
capturing technique that we use for the compressible Navier-Stokes equations, which is based on 
previous work for the convectiondiffusion e q ~ a t i o n . ~ ~ - ~ ~  This technique is similar to that 
proposed by other authors using different rea~oning . ’~-~’  

2. THE SCALAR CONVECTION-DIFFUSION PROBLEM AND THE 
CHARACTERISTIC GALERKIN EXPLICIT APPROXIMATION 

Before proceeding to the description of the full algorithm we shall recall the application of the 
characteristic Galerkin method in the explicit form to a typical convection-diffusion process with 
a scalar4ependent variable 4. 

The governing equations can here be written always in a conservation form as 

dFi aCi 
- + - + - + Q = O  
at axi axi 
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where xi is the ith Cartesian co-ordinate ( i  = 1,2,3), 

is the convected flux, 

is the diffusion flux, 

is the source term, and 

with components ui is the velocity field, which is assumed to be known. 
The full equation can thus be alternatively written as 

(3) 

where a = aui/axi. 
Let us denote by x"(xref, tref; t) the trajectory of the particle that at time t = tref is located at the 

spatial point xref, so that i(xrefr tref; tref) = xref. This trajectory, or characteristic, will be the 
solution of the problem 

d 
- i (t) = u(?(t), t) 
dt (44 

?(tref) = xref (4b) 
In the short-hand notation i ( t )  it is understood that 2 depends also on tref and xref through the 
boundary condition (4b). We have that 

and therefore equation (3) may be rewritten as 

d 
dt 

where all the terms are understood to be evaluated at x = ?(t). The idea now is to discretize the 
derivative d/dt using a finite difference scheme, that is, to discretize the total derivative in 
equation (3) along the characteristics. 

It is observed that equation (6) only involves self-adjoint operators in space. In this case, it is 
known that the standard Galerkin approximation in space is optimal but the inconvenience of 
a moving co-ordinate system is introduced. To avoid this difficulty a local approximation can be 
~ s e d . ~ - ~  The best approximation that we can expect using a single-step scheme is second order. 
This is why we shall first discretize equation (6) in time up to second order. Once this is done, 
different schemes can be obtained by approximating the second (temporal) argument of 4, 
yielding discrete schemes with a lower temporal accuracy but potentially second-order accurate 
in space. 
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Suppose now that we have the solution at time t ,  and we want to compute it at time t, + 1 .  Let 
tref be a reference time in [t,, t ,+  The discretization of equation (6)  that we consider is: 

where 8 E [0 ,1 ] .  To obtain a second-order approximation we must take 8 = 112 (Crank-Nicolson 
scheme). 

We derive now an explicit expression for 4 ( x ( t n +  l),tn+l) and 6(%(tn), tn ) .  This will allow us to 
obtain a semi-discrete system of equations where all the terms will be evaluated at the same point 
of the same spatial domain. This can be done in particular for tref = t ,  + At12 = t ,+ 1,2 and 
tref = t ,  + At = t ,+ The first option yields the classical Crank-Nicolson discretization of 
equation (3), whereas the second introduces some additional terms that enhance the stability of 
the numerical scheme. From the geometrical standpoint, if tref = t,+ equation (7) (with 8 = 1/2) 
may be viewed as centered discretization along the characteristics. On the other hand, for 
tref = t,+ we move backwards. This is relative to the particle we follow-in both cases, though, 
the discretization is formally of second order (see Figure 1). 

Let us consider the case tref = t,+ and so f i ( t ,+ 1 )  = xref (see equations (4)). To emphasize that 
xrCf is arbitrary, we shall write x instead of xref. 

The solution of problem (4) may be approximated up to second order as follows: 

t 

t 
"+ 1 

t 

tref 

t 
n 

X(t",l) x< tJ  x := x ( t  ref) 

Figure 1. Reference particle for the discretization along the characteristics 
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and therefore, 
u(%(t,), t,) = U(X - At U" + O(At'), t,) 

aun 
axi = U" - At U: - + O(At2) 

Equation (9) allows to obtain the following third-order approximation to the trajectory Z: 
At 

g(tn) = %(tn+l) - 7 [u(g(tn+lh tn+ l )  + u(%(tn), tn)I + O(At3) 

At2 aUn - - x - AtU"+1/2 + - u ! -  + O(At3) 
2 axi  

where u " + ~ / ~  = [u"" + u"]/2. Using the approximation (10) we obtain 

At2 aUn 
x - At u " + ~ / '  + - U: - + O(At3), t, 

2 axi 

, + 112 ay At2 au; a p  
axj  2 axi axj  = @ - At ~j +-un-- 

+ o ( ~ t 3 )  
At2 n + 1 / 2  n + 1 / 2  a 84, + -ui uj 
2 axi axj 

Using the fact that u " + ~ / ~  = u" + O(At) we may write equation (11) as 

n + 1 / 2 a P  At2 a n a y  
4(%(t,), t,) = 4, - At uj - + - U: - uj - + O(At3) 

axj 2 a x i (  a x j )  

(9) 

This holds for any function 4. A simplified version of this approximation is 

(13) 
aP 
axj 4(g(tn),  t , )  = @' - At U; - + O(At2) 

Using equation (12) in the discretization of the temporal derivative in equation (7) (with 8 = 1/2) 
and equation (13) to approximate the rest of the terms evaluated at x = f ( t , )  and t = t, we finally 
obtain 

Once this semi-discrete problem has been obtained, we may further approximate values at the 
time level n + 1/2 by values at n, thus obtaining a fully explicit scheme. This involves only an 
approximation of the temporal argument of the functions. Moreover, if we use linear elements for 
the space discretization the diffusion term in the last bracketed term of equation (14a) may be 
neglected, assuming that it is evaluated elementwise. Using these approximations, we obtain 
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This can also be written as 

where A 4  = @+ - @. This is the form of the characteristic Galerkin method that will be used 
throughout the paper. Note however that the diffusion contribution must be added in the last 
term of equation (15) if quadratic elements are used. 

An identical expression can be here derived by using a higher order time approximation of the 
Lax-Wendroff type for a single scalar variable. However, and as already mentioned, since 
equation ( 1  5) is derived from a self-adjoint problem in space, the spatial discretization by 
Galerkin method is optimal. We can write thus the approximation 

4 = N $  (16) 

(17) 

and use the weighting NT in the integrated residual expression. Thus we obtain 

M(@'"+' - @) = - At[(C@ + K@ + f") + A.t(K,@ + f:)] 
where 

M = JfiNTNdR, C = JfiNT- a(uiN) 

aNT aN 
~ k - dR + b.t. f = 

axi 

axi axi 
Expressions for K, and f: come from the new term introduced by the discretization along the 
characteristics. After integration by parts, the expression of K, and f, is 

. a  d 
K, = 5 - (uiNT)- (ujN)dS1 

2 naxi axj 

i a  
f, = jQ axi (uiNT)Q dR + b.t. 

The approximation is valid for any scalar-convected quantity even if that is one of the compo- 
nents of the velocity u itself, as is the case with the momentum conservation equations. For this 
reason we have elaborated the full details of the spatial approximation as the matrices will be 
repeatedly used. 

It is of interest to remark that the explicit form of the equation (17) is conditionally stable. For 
one-dimensional problems using linear elements, the stability condition is given as (neglecting the 
effect of sources) 

A t G A t .  -"(/$+--') 1 
Cr't - I u I 3 P  

In above the Peclet number P is defined as 

With h being the representative element size. The term 1/3 in equation (19a) may be replaced by 
1 if mass lumping is used. Concerning quadratic elements, the stability limit for 1-D problems can 
be obtained as described in.32 
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In 2-D problems the critical time-step size may be computed as3' 

Atg At, 
At, + At, Atcrit = 

where Ato is given by (19a) and Aty = h2/2k is the diffusive limit for the critical one-dimensional 
time-step size. 

Further, with At = Atcrit the steady-state solution results in an (almost) identical diffusion 
change to that obtained by using the optimal streamline upwinding procedures6 Thus, if 
steady-state solutions are the main objective of the computation such a value of At should be used 
in connection with the K, term. 

3. THE GENERAL FRACTIONAL STEP ALGORITHM FOR 
THE NAVIER-STOKES EQUATIONS 

3.1. The equations offlow 

ally written as 
The full conservation form of the Navier-Stokes equations for compressible flow is tradition- 

av a F i  aGi 
at axi axi 
- + - + - + Q = O  

with 
VT = CP, PUl, PUZ, P U 3 ,  PEI 

being the independent variable vector. Further, 

defines the convective flux vector and 

defines the diffusion flows. Finally 

gives the source terms due to (minus) the gravity acceleration. 
In above the stress components zij  are related to velocity gradients by 

I J )  

aui auj 2 auk 
T i j = p  -+----6.. ( axj axi 3 ax, 

where p is the density, ui are the velocity components, p is the pressure, E is the internal energy 
and T is the absolute temperature. 

The equations are completed by the universal gas law 

p = pRT 
where R is the gas constant. 

The sound velocity is defined assuming constant entropy as 
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Further we can write conveniently 

though this expression assumes again constant entropy and is therefore only an approximation. 
We shall use in what follows equation (25), but later we will discuss the possibility of correcting 
any errors involved by an amendment of the algorithm. In any case, in explicit forms of the 
algorithm this approximation is not used. 

While in compressible gas flow all the equations are fully coupled, for incompressible flow in 
which c = 00 the energy equations can be solved independently after the velocity field has been 
established. Nevertheless a single algorithm for the solution of both problems is possible as we 
shall now show. 

3.2. The general algorithm 

For convenience we shall rewrite equation (20) in a more direct form, omitting initially the 
energy equation. These equations can be solved completely in a time increment At as the only 
coupling which exists is through the speed of sound c for which we shall simply use the value at 
time t ,  due to the explicit nature of the time-stepping algorithm. 

We thus write the first of equations (20), i.e. the mass flow continuity, as 

a p  1 a p  au, 
at c2 at ax; 
- - 

in which we use equation (25). Further, for each of the momentum conservation equations we 
write similarly 

In above we define 

and 

Since 

au, a j j  az i j  ap  
at axj axj  axi 
_-  - -_  + - - - - g S i  

ui = pui 

f i j  = U j ( P U , )  = ujui 

afi j  auj a ui 
- ui + uj- axi  axj  axj  

we can discretize in time equation (27) using the characteristic Galerkin process if the variation of 
p is known in time. Except for the pressure term this equation is similar to the convec- 
tion-diffusion problem of equation (3). If we consider the pressure gradient evaluated at 
t, + B2 At, where 0 6 B2 < 1, the term (1 - 02)dp/axi will be evaluated at  time t, and thus treated 
exactly as the source Q in equation (3). On the other hand, the term B2ap/axi will be evaluated at 
t, + At, so that no modification is needed for it to account for the discretization along the 
characteristics. We shall have therefore, 
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Before proceeding further it is convenient to introduce an auxiliary variable oi such that 

and therefore 

Aui = u;" - uy 

where Ap = p"+' - p" and the last term as before represents the 'source' correction. 
From equation (26) we have, on omitting third-order terms 

a z p n  a2 Ap 
At el (- axi axi + e2 -)] axi axi 

(33) 

It is clear that equations (3 1)-(33) can be solved after spatial discretization in the following 

(1) equation (31) giving AOi, 
(2) equation (33) giving Ap, and hence p n +  , 
(3) equation (32) giving AUi  thus establishing the values of U i  at t,+ ,. 
In all of the equations given below the standard Galerkin procedure is used with the usual 

order: 

spatial discretization 

ui =  NU^, A U ~  = NAU~,  A V " ~  = N A ~ J ~  (34) 

and 

P = N,P 

This gives from equation (31) the increment of fJi as 

Step 1 

A 6  = - M-'At[(CO + KO - f)At(KuO + fs)]" I (35) 

where all the discretization matrices are the same as those defined by equation (18), although 
properly expanded to account for the vectorial character of the nodal variables. 

Discretization of equation (33) gives similarly 
Step 2 

1 (M + At2 8' 8,H)Ap = At[Q(U + 8, A 6 )  - At OIHp - f,,]" I (36) 

which can be solved for Ap. 
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1 AEv = - At [CE, + K T  + f, - At(K,E, + fes)In 

The new matrices arising here are 

(42) 

The question of establishing the boundary conditions for the pressure is discussed in detail in 

The final stage of the computation of the mass flow vector Ul' ' is completed by discretization 

Step 3 

Appendix I. 

of equation (32) and we have now simply 

I AU = A b  - M-'At[QT(p + O2 Ap) + At P p l n  I (38) 

where 

1 a aNP 
2 axi P = - (1 - 6,) jR G (uiN:) - dR (39) 

At the completion of this stage the values of U?" and p"" as fully determined but the 
computation of the energy pE"" is needed so that new values of c"", the speed of sound, can be 
determined. 

The last equation in (20), 1.e. the energy conservation equation, can be written as 

Once again this equation is identical in form to that of the scalar problem of equation (3) if we 
observe that p ,  U i ,  etc. have been determined. Now the last term can be evaluated at time (n + Q3) ,  

with 0 < O 3  6 1, for improved accuracy, but in what follows we shall take O3 = 0 for simplicity. 
Using the characteristic Galerkin approximation for equation (40) and discretizing as 

p E  = NEE, (41) 
we have 

Step 4 
I I 

B 
f, = IR N i  - (ujp + tijui)dR + b.t. ax 

a 
axj (U~N;) - (ujp + ~ i j u i )  dR + b.t. 

(43) 
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It is of interest to observe that the process of Step 4 can be extended in an identical manner to 
equations describing the transport of such quantities as turbulence parameters, chemical concen- 
trations etc. once the first essential Steps 1-3 have been completed. 

4. SEMI-IMPLICIT AND EXPLICIT FORMS OF THE ALGORITHM 

The algorithm described can be used in a semi-implicit form and indeed only in this form 
incompressible problems in which c = co and M = 0 can be solved. Taking 

i a l a ,  +a2a (44) 
the algorithm is conditionally stable. The permissible time step is governed by the critical step of 
the explicit relation solved in Step I of the algorithm. This is the standard convectiondiffusion 
problem discussed in Section 2 and the same stability limits apply, reaching for an inviscid fluid 
a value close to 

h 
At 

Cr't - 14 (45) 

For slighty compressible or incompressible problems in which is small or zero the semi implicit 
form is efficient and it should be noted that the matrix H of equation (37) does not vary during the 
computation process and can be partially inverted, thus simplifying the computations consider- 
ably. 

In other semi-implicit forms when compressibility exists the question of the correctness of the 
approximation of equation (25) remains still unanswered and has to be further investigated. Here 
of course an iterative correction can be used. It should however be remarked that for low, 
subsonic speeds the approximation is nearly exact as the coupling with temperature changes is 
low. This is fortunate as it is only in that range of flows in which the semi-implicit form is 
advantageous, because at high supersonic speeds the critical time step of both semi-implicit and 
explicit schemes is very similar, and the latter provides a cheaper algorithm. 

The fully explicit form is obtained by putting e2 = 0. Now of course the critical step will be 
reduced to the order of 

h 

and this is indeed the same limit as that encountered in other explicit forms of Euler or 
Navier-Stokes computational schemes currently effectively used. 

The four equations (39, (36), (38) and (42) can be solved simultaneously if we take O2 = 0 and 
the term At O1 AfJ in the R.H.S. of equation (36) is omitted. This of course is an additional 
approximation and is not necessary but is here introduced to mimic artificial diffusions pre- 
viously extensively used with the standard Galerkin form. 

Further the use of the approximation of equation (25) is now no longer necessary as the density 
increment is directly obtained if we note that 

MAP = MAP (47) 

With above simplifications we can return to the original equations (20) and using the Galerkin 
approximation on these we can write directly 
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omitting the source and boundary terms for clarity. The added diffusion terms D arising from the 
proposed algorithm are defined below and have to be integrated by parts in the usual manner. 

D =  

a 2  
291- P axiaxi 

- (UjPUl) + ~ ui - axi a IIa axj ax ap 1 1 
(49) 

The 'diffusions' added are simple and largely streamline oriented (for divergence-free velocities) 
thus not masking the true effects of viscosity as happens in some schemes. The importance of the 
various terms will be discussed in Part I1 of this paper where detailed comparisons with other 
explicit schemes are made. 

If steady-state results only are sought it would appear that At in the definition of the matrix 
D should be set at its optimal value of Atcrit z h/(ul for inviscid flows or given by (19a) generally. 

However the oversimplified scheme of equation (49) looses some accuracy and even when 
steady state is reached will give slightly different results than those obt_ained using the full 
sequential updating. The additional cost involved in computing the sequence AD + Ap + A U  + AE" 
will have to be balanced against the accuracy increase. 

It is of interest to note here in passing that the full sequential scheme introduces a so called 
'fourth-order' diffusion proportional to At QTM- 'Qp in addition to the second-order diffusion 
proportional to At Hp into the computation. We shall indicate how this arises in the Section 6. 

5. SHOCK CAPTURING TECHNIQUE 

Once the basic formulation has been established, let us consider now the problem of removing the 
local oscillations that still remain using the characteristic Galerkin method. The shock capturing 
technique that we describe in this section is based on the application of the method described in 
References 27 and 28 for the convection-diffusion equation to the compressible Navier-Stokes 
equations. Another shock capturing method that we use is described in Reference 33. 

The basic idea of the method that we want to describe now is to introduce an anisotropic 
additional diffusion to the discrete equations. This diffusion is taken proportional to the spatial 
residual of the previous time step, thus keeping the consistency of the finite element formulation 
when the steady state is reached. 

Let us describe the method for the momentum equations (30). For simplicity, we shall consider 
the case O 2  = 0, although what follows can be easily extended to the case d 2  > 0. Introducing the 
spatial residual 

a j j  at. .  ap 
axj axj axi 

R .  = - -2 + - +g. 
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Equations (30) may be written as 

We now introduce for each element the shock capturing v i s ~ o s i t y ~ ' - ~ ~  

88 1 

(51) 

where h is the element length and VUi is the gradient of Ui. If this gradient is very small, vsc = 0 is 
taken. Also, when the viscosity is small, the parameter in equation (52) may be taken as 
constant. The values 0.3 and 0.15 are effective for linear and quadratic elements, respectively. See 
Reference 27 for further discussion about the selection of B. All the values in equation (52) are 
understood to be evaluated for each element and at the nth time step. For the particular case of 
linear interpolation, derivatives of order two or higher can be neglected. 

In principle, the shock capturing viscosity vsc could be introduced to equation (51). However, 
the second term within the brackets in this equation already introduces a viscosity along the 
streamlines of magnitude 

At 
Vcg = - 1Ul2 (53) 

To account for it, the additional viscosity that has to be introduced along the streamlines is only 

The final shock capturing viscosity is therefore anisotropic, of magnitude vS1 along the streamlines 
and v,, along the other directions. Thus is schematically represented in Figure 2. 

U 

Figure 2. Shock capturing viscosity introduced along the streamlines and the normal directions 



882 0. C. ZIENKIEWICZ AND R. CODINA 

Once the anisotropic viscosity is introduced in equation (51) the final scheme will be 

This equation replaces equation (30) (for O2 = 0) when shock capturing has to be used. 
Since all the terms corresponding to the additional viscosity are treated explicitly, we keep 

them in the first step of the splitting procedure, that is, they are added to the R.H.S. of equation 
(31). They affect therefore the calculation of 0 but equation (32) is unaltered. 

A similar procedure to that yielding equation (55) should be applied also to the energy 
equation, which is also of convection4ffusion type. FOF the continuity equation, if a shock 
capturing diffusion is also added it will be isotropic, since no additional viscosity has been 
previously added. 

6. WHY THE BB RESTRICTIONS ARE CIRCUMVENTED 

We examine here the structure of equations reached in steady conditions. For simplicity we shall 
consider here only the Stokes form of governing equations in which the convective terms 
disappear. Further we shall take the fluid as incompressible and thus uncouple the energy 
equations. Now the three steps of equations ( 3 3 ,  (36) and (38) are written as 

A 6  = - AtM-'[KU" - f ]  (564 
1 

AQ = ~ H-'[Q(V + O1 AfJ) - At OIHpn - f,] 
At Ole2 

AU = AfJ - AtM-'QT(@" + 6 2  Ap) (56c) 

In steady state Ap = AU = 0 and eliminating AfJ we can write (dropping now the superscript a) 

KO + QT@ = f (57) 

from equations (56a) and (56c) and 

(58)  QU + 81 At QM- lQTp - At O1 Hp - f, = 0 

from equations (56b) and (56~).  
We finally have a system which can be written in a form 

QT [ -'Q AtO,[H-QM-'QT] (59) 

where f, and f2 arise from the forcing terms. 
This system has a non-zero diagonal which is proportional to At and which, as already 

mentioned, is very similar to the forms suggested by other rea~oning. '~- '~  
Further it will be immediately observed that if the additional simplification introduced in 

equation (48) is made to avoid the sequential operations, the term At QM- lQT disappears. This 
term is however very useful adding a 'smoothing' by spreading the effect of jumps, etc. to a wider 
pattern of elements. 
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It can be easily verified that if the pressure gradient term is retained in equation (31) (which 
would seem to give a better approximation) the diagonal term of equation (59) is identically zero 
and the BB conditions are still necessary. 

7. SUMMARY 

The algorithm here introduced follows similar lines of reasoning as were used in previous 
attempts to derive the ‘universal’ algorithm. Details however are different and in particular the 
introduction of the ‘characteristic Galerkin’ diffusion is more direct and different. In further parts 
of this paper numerical tests will be made and accuracy tested in various applications. 

Application of the identical procedure to shallow water equation is obvious and again the 
performance is excellent as observed in Reference 34 presented in the same volume. 
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APPENDIX I 

We shall consider in this appendix the boundary conditions to be imposed for equation (33). 
Observe first that equation (32) may be written as 

(60) 
I aPn+e2 A U i = A U i - A t -  axi 

where, up to terms of second order in At, 

pn+yX) = (1 - e , ) p y q  + eZpn+yx) 

The pressure boundary conditions we use are the continuity of the normal component of the 
momentum equation at the boundary. It may be readily checked that this is equivalent to the 
verification of the normal component of equation (60) at the boundary, that is 

- apn + e2 
n i A U i  = niAUi - A t n i p  axi 

Multiplying equation (33) by the matrix of pressure test functions N, and integrating by parts 
we obtain, using equation (62), 
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from where it follows that the term f, in equation (36) is given by 

f, = - jdn N:niUr - 8, jan N$niAUidT 

This expression involves AUi, which is unknown at the moment of solving the pressure equation. 
However, the second term in the R.H.S. of equation (64) may be neglected. This approximation is 
exact if U is prescribed on the whole boundary an. On the other hand, and in order to avoid the 
need to compute the boundary integral, in equation (63) we may rewrite the first two terms of the 
two terms of the R.H.S. as 

Instead of equation (27) we shall have 

where 

Observe that no term f, appears in equation (66). 
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